⚡ GPU acceleration
Section under construction
This section contains instruction on how to use LocalAI with GPU acceleration.
For accelleration for AMD or Metal HW there are no specific container images, see the build
Model configuration
Depending on the model architecture and backend used, there might be different ways to enable GPU acceleration. It is required to configure the model you intend to use with a YAML config file. For example, for llama.cpp
workloads a configuration file might look like this (where gpu_layers
is the number of layers to offload to the GPU):
name: my-model-name
# Default model parameters
parameters:
# Relative to the models path
model: llama.cpp-model.ggmlv3.q5_K_M.bin
context_size: 1024
threads: 1
f16: true # enable with GPU acceleration
gpu_layers: 22 # GPU Layers (only used when built with cublas)
For diffusers instead, it might look like this instead:
name: stablediffusion
parameters:
model: toonyou_beta6.safetensors
backend: diffusers
step: 30
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps,clip_skip"
scheduler_type: "k_dpmpp_sde"
CUDA(NVIDIA) acceleration
Requirements
Requirement: nvidia-container-toolkit (installation instructions 1 2)
To check what CUDA version do you need, you can either run nvidia-smi
or nvcc --version
.
Alternatively, you can also check nvidia-smi with docker:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
To use CUDA, use the images with the cublas
tag, for example.
The image list is on quay:
- CUDA
11
tags:master-cublas-cuda11
,v1.40.0-cublas-cuda11
, … - CUDA
12
tags:master-cublas-cuda12
,v1.40.0-cublas-cuda12
, … - CUDA
11
+ FFmpeg tags:master-cublas-cuda11-ffmpeg
,v1.40.0-cublas-cuda11-ffmpeg
, … - CUDA
12
+ FFmpeg tags:master-cublas-cuda12-ffmpeg
,v1.40.0-cublas-cuda12-ffmpeg
, …
In addition to the commands to run LocalAI normally, you need to specify --gpus all
to docker, for example:
docker run --rm -ti --gpus all -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12
If the GPU inferencing is working, you should be able to see something like:
5:22PM DBG Loading model in memory from file: /models/open-llama-7b-q4_0.bin
ggml_init_cublas: found 1 CUDA devices:
Device 0: Tesla T4
llama.cpp: loading model from /models/open-llama-7b-q4_0.bin
llama_model_load_internal: format = ggjt v3 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 1024
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 0.07 MB
llama_model_load_internal: using CUDA for GPU acceleration
llama_model_load_internal: mem required = 4321.77 MB (+ 1026.00 MB per state)
llama_model_load_internal: allocating batch_size x 1 MB = 512 MB VRAM for the scratch buffer
llama_model_load_internal: offloading 10 repeating layers to GPU
llama_model_load_internal: offloaded 10/35 layers to GPU
llama_model_load_internal: total VRAM used: 1598 MB
...................................................................................................
llama_init_from_file: kv self size = 512.00 MB
Intel acceleration (sycl)
Requirements
Requirement: Intel oneAPI Base Toolkit
To use SYCL, use the images with the sycl-f16
or sycl-f32
tag, for example v2.7.0-sycl-f32-core
, v2.7.0-sycl-f16-ffmpeg-core
, …
The image list is on quay.
Notes
In addition to the commands to run LocalAI normally, you need to specify --device /dev/dri
to docker, for example:
docker run --rm -ti --device /dev/dri -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v2.7.0-sycl-f16-ffmpeg-core
Last updated 01 Feb 2024, 17:16 +0100 .